Polynomial differential systems with hyperbolic algebraic limit cycles
نویسندگان
چکیده
منابع مشابه
Limit Cycles for a Generalized Kukles Polynomial Differential Systems
We study the limit cycles of a generalized Kukles polynomial differential systems using the averaging theory of first and second order.
متن کاملLimit cycles of cubic polynomial differential systems with rational first integrals of degree 2
The main goal of this paper is to study the maximum number of limit cycles that bifurcate from the period annulus of the cubic centers that have a rational first integral of degree 2 when they are perturbed inside the class of all cubic polynomial differential systems using the averaging theory. The computations of this work have been made with Mathematica and Maple.
متن کاملOn the Limit Cycles of the Polynomial Differential Systems with a Linear Node and Homogeneous Nonlinearities
We consider the class of polynomial differential equations ẋ = λx + Pn(x, y), ẏ = μy + Qn(x, y) in R where Pn(x, y) and Qn(x, y) are homogeneous polynomials of degree n > 1 and λ 6= μ, i.e. the class of polynomial differential systems with a linear node with different eigenvalues and homogeneous nonlinearities. For this class of polynomial differential equations we study the existence and non–e...
متن کاملLIMIT CYCLES FOR m–PIECEWISE DISCONTINUOUS POLYNOMIAL LIÉNARD DIFFERENTIAL EQUATIONS
We provide lower bounds for the maximum number of limit cycles for the m–piecewise discontinuous polynomial differential equations ẋ = y + sgn(gm(x, y))F (x), ẏ = −x, where the zero set of the function sgn(gm(x, y)) with m = 2, 4, 6, . . . is the product of m/2 straight lines passing through the origin of coordinates dividing the plane in sectors of angle 2π/m, and sgn(z) denotes the sign funct...
متن کاملLimit Cycles of the Generalized Polynomial Liénard Differential Equations
We apply the averaging theory of first, second and third order to the class of generalized polynomial Liénard differential equations. Our main result shows that for any n, m ≥ 1 there are differential equations of the form ẍ+f(x)ẋ+g(x) = 0, with f and g polynomials of degree n and m respectively, having at least [(n + m− 1)/2] limit cycles, where [·] denotes the integer part function.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Qualitative Theory of Differential Equations
سال: 2020
ISSN: 1417-3875
DOI: 10.14232/ejqtde.2020.1.34